63 research outputs found

    Empirical Evaluation of Mutation-based Test Prioritization Techniques

    Full text link
    We propose a new test case prioritization technique that combines both mutation-based and diversity-based approaches. Our diversity-aware mutation-based technique relies on the notion of mutant distinguishment, which aims to distinguish one mutant's behavior from another, rather than from the original program. We empirically investigate the relative cost and effectiveness of the mutation-based prioritization techniques (i.e., using both the traditional mutant kill and the proposed mutant distinguishment) with 352 real faults and 553,477 developer-written test cases. The empirical evaluation considers both the traditional and the diversity-aware mutation criteria in various settings: single-objective greedy, hybrid, and multi-objective optimization. The results show that there is no single dominant technique across all the studied faults. To this end, \rev{we we show when and the reason why each one of the mutation-based prioritization criteria performs poorly, using a graphical model called Mutant Distinguishment Graph (MDG) that demonstrates the distribution of the fault detecting test cases with respect to mutant kills and distinguishment

    Effective Removal of Operational Log Messages: an Application to Model Inference

    Full text link
    Model inference aims to extract accurate models from the execution logs of software systems. However, in reality, logs may contain some "noise" that could deteriorate the performance of model inference. One form of noise can commonly be found in system logs that contain not only transactional messages---logging the functional behavior of the system---but also operational messages---recording the operational state of the system (e.g., a periodic heartbeat to keep track of the memory usage). In low-quality logs, transactional and operational messages are randomly interleaved, leading to the erroneous inclusion of operational behaviors into a system model, that ideally should only reflect the functional behavior of the system. It is therefore important to remove operational messages in the logs before inferring models. In this paper, we propose LogCleaner, a novel technique for removing operational logs messages. LogCleaner first performs a periodicity analysis to filter out periodic messages, and then it performs a dependency analysis to calculate the degree of dependency for all log messages and to remove operational messages based on their dependencies. The experimental results on two proprietary and 11 publicly available log datasets show that LogCleaner, on average, can accurately remove 98% of the operational messages and preserve 81% of the transactional messages. Furthermore, using logs pre-processed with LogCleaner decreases the execution time of model inference (with a speed-up ranging from 1.5 to 946.7 depending on the characteristics of the system) and significantly improves the accuracy of the inferred models, by increasing their ability to accept correct system behaviors (+43.8 pp on average, with pp=percentage points) and to reject incorrect system behaviors (+15.0 pp on average)

    Many-Objective Reinforcement Learning for Online Testing of DNN-Enabled Systems

    Get PDF
    Deep Neural Networks (DNNs) have been widely used to perform real-world tasks in cyber-physical systems such as Autonomous Diving Systems (ADS). Ensuring the correct behavior of such DNN-Enabled Systems (DES) is a crucial topic. Online testing is one of the promising modes for testing such systems with their application environments (simulated or real) in a closed loop taking into account the continuous interaction between the systems and their environments. However, the environmental variables (e.g., lighting conditions) that might change during the systems' operation in the real world, causing the DES to violate requirements (safety, functional), are often kept constant during the execution of an online test scenario due to the two major challenges: (1) the space of all possible scenarios to explore would become even larger if they changed and (2) there are typically many requirements to test simultaneously. In this paper, we present MORLOT (Many-Objective Reinforcement Learning for Online Testing), a novel online testing approach to address these challenges by combining Reinforcement Learning (RL) and many-objective search. MORLOT leverages RL to incrementally generate sequences of environmental changes while relying on many-objective search to determine the changes so that they are more likely to achieve any of the uncovered objectives. We empirically evaluate MORLOT using CARLA, a high-fidelity simulator widely used for autonomous driving research, integrated with Transfuser, a DNN-enabled ADS for end-to-end driving. The evaluation results show that MORLOT is significantly more effective and efficient than alternatives with a large effect size. In other words, MORLOT is a good option to test DES with dynamically changing environments while accounting for multiple safety requirements

    Identifying the Hazard Boundary of ML-enabled Autonomous Systems Using Cooperative Co-Evolutionary Search

    Full text link
    In Machine Learning (ML)-enabled autonomous systems (MLASs), it is essential to identify the hazard boundary of ML Components (MLCs) in the MLAS under analysis. Given that such boundary captures the conditions in terms of MLC behavior and system context that can lead to hazards, it can then be used to, for example, build a safety monitor that can take any predefined fallback mechanisms at runtime when reaching the hazard boundary. However, determining such hazard boundary for an ML component is challenging. This is due to the problem space combining system contexts (i.e., scenarios) and MLC behaviors (i.e., inputs and outputs) being far too large for exhaustive exploration and even to handle using conventional metaheuristics, such as genetic algorithms. Additionally, the high computational cost of simulations required to determine any MLAS safety violations makes the problem even more challenging. Furthermore, it is unrealistic to consider a region in the problem space deterministically safe or unsafe due to the uncontrollable parameters in simulations and the non-linear behaviors of ML models (e.g., deep neural networks) in the MLAS under analysis. To address the challenges, we propose MLCSHE (ML Component Safety Hazard Envelope), a novel method based on a Cooperative Co-Evolutionary Algorithm (CCEA), which aims to tackle a high-dimensional problem by decomposing it into two lower-dimensional search subproblems. Moreover, we take a probabilistic view of safe and unsafe regions and define a novel fitness function to measure the distance from the probabilistic hazard boundary and thus drive the search effectively. We evaluate the effectiveness and efficiency of MLCSHE on a complex Autonomous Vehicle (AV) case study. Our evaluation results show that MLCSHE is significantly more effective and efficient compared to a standard genetic algorithm and random search

    Systematic Evaluation of Deep Learning Models for Failure Prediction

    Full text link
    With the increasing complexity and scope of software systems, their dependability is crucial. The analysis of log data recorded during system execution can enable engineers to automatically predict failures at run time. Several Machine Learning (ML) techniques, including traditional ML and Deep Learning (DL), have been proposed to automate such tasks. However, current empirical studies are limited in terms of covering all main DL types -- Recurrent Neural Network (RNN), Convolutional Neural network (CNN), and transformer -- as well as examining them on a wide range of diverse datasets. In this paper, we aim to address these issues by systematically investigating the combination of log data embedding strategies and DL types for failure prediction. To that end, we propose a modular architecture to accommodate various configurations of embedding strategies and DL-based encoders. To further investigate how dataset characteristics such as dataset size and failure percentage affect model accuracy, we synthesised 360 datasets, with varying characteristics, for three distinct system behavioral models, based on a systematic and automated generation approach. Using the F1 score metric, our results show that the best overall performing configuration is a CNN-based encoder with Logkey2vec. Additionally, we provide specific dataset conditions, namely a dataset size >350 or a failure percentage >7.5%, under which this configuration demonstrates high accuracy for failure prediction

    PRINS: Scalable Model Inference for Component-based System Logs

    Get PDF
    Behavioral software models play a key role in many software engineering tasks; unfortunately, these models either are not available during software development or, if available, quickly become outdated as implementations evolve. Model inference techniques have been proposed as a viable solution to extract finite state models from execution logs. However, existing techniques do not scale well when processing very large logs that can be commonly found in practice. In this paper, we address the scalability problem of inferring the model of a component-based system from large system logs, without requiring any extra information. Our model inference technique, called PRINS, follows a divide-and-conquer approach. The idea is to first infer a model of each system component from the corresponding logs; then, the individual component models are merged together taking into account the flow of events across components, as reflected in the logs. We evaluated PRINS in terms of scalability and accuracy, using nine datasets composed of logs extracted from publicly available benchmarks and a personal computer running desktop business applications. The results show that PRINS can process large logs much faster than a publicly available and well-known state-of-the-art tool, without significantly compromising the accuracy of inferred models

    Digital Twins Are Not Monozygotic -- Cross-Replicating ADAS Testing in Two Industry-Grade Automotive Simulators

    Get PDF
    The increasing levels of software- and data-intensive driving automation call for an evolution of automotive software testing. As a recommended practice of the Verification and Validation (V&V) process of ISO/PAS 21448, a candidate standard for safety of the intended functionality for road vehicles, simulation-based testing has the potential to reduce both risks and costs. There is a growing body of research on devising test automation techniques using simulators for Advanced Driver-Assistance Systems (ADAS). However, how similar are the results if the same test scenarios are executed in different simulators? We conduct a replication study of applying a Search-Based Software Testing (SBST) solution to a real-world ADAS (PeVi, a pedestrian vision detection system) using two different commercial simulators, namely, TASS/Siemens PreScan and ESI Pro-SiVIC. Based on a minimalistic scene, we compare critical test scenarios generated using our SBST solution in these two simulators. We show that SBST can be used to effectively and efficiently generate critical test scenarios in both simulators, and the test results obtained from the two simulators can reveal several weaknesses of the ADAS under test. However, executing the same test scenarios in the two simulators leads to notable differences in the details of the test outputs, in particular, related to (1) safety violations revealed by tests, and (2) dynamics of cars and pedestrians. Based on our findings, we recommend future V&V plans to include multiple simulators to support robust simulation-based testing and to base test objectives on measures that are less dependant on the internals of the simulators.Comment: To appear in the Proc. of the IEEE International Conference on Software Testing, Verification and Validation (ICST) 202

    Quality Based Software Project Staffing and Scheduling with Budget and Deadline

    Get PDF
    Abstract-Software project planning is becoming more complicated and important as the size of software project grows. Many approaches have been proposed to help project managers by providing optimal staffing and scheduling in terms of minimizing the salary cost or duration. Unfortunately, the software quality, another critical factor in software project planning, is largely overlooked in previous work. In this paper, we propose the quality based software project staffing and scheduling approach. We provide better software project plans considering quality with either cost bound (Budget) or duration bound (Deadline) for software project managers
    • …
    corecore